Matrices of 3-iet preserving morphisms
نویسندگان
چکیده
منابع مشابه
Matrices of 3-iet preserving morphisms
We study matrices of morphisms preserving the family of words coding 3-interval exchange transformations. It is well known that matrices of morphisms preserving sturmian words (i.e. words coding 2-interval exchange transformations with the maximal possible factor complexity) form the monoid {M ∈ N | det M = ±1} = {M ∈ N | MEM = ±E}, where E = ( 0 1 −1 0 ). We prove that in case of exchange of t...
متن کاملPeriodicity, morphisms, and matrices
In 1965, Fine and Wilf proved the following theorem: if (fn)n¿0 and (gn)n¿0 are periodic sequences of real numbers, of period lengths h and k, respectively, and fn = gn for 06 n¡h+ k − gcd(h; k), then fn = gn for all n¿ 0. Furthermore, the constant h + k − gcd(h; k) is best possible. In this paper, we consider some variations on this theorem. In particular, we study the case where fn 6 gn inste...
متن کاملLinear maps preserving or strongly preserving majorization on matrices
For $A,Bin M_{nm},$ we say that $A$ is left matrix majorized (resp. left matrix submajorized) by $B$ and write $Aprec_{ell}B$ (resp. $Aprec_{ell s}B$), if $A=RB$ for some $ntimes n$ row stochastic (resp. row substochastic) matrix $R.$ Moreover, we define the relation $sim_{ell s} $ on $M_{nm}$ as follows: $Asim_{ell s} B$ if $Aprec_{ell s} Bprec_{ell s} A.$ This paper characterizes all linear p...
متن کاملOn Morphisms Preserving Primitive Words
A word is called primitive if it cannot be expressed as the power of another word. Morphisms preserving primitive words are investigated. Similarly to the word case, each square-free morphism is a primitive morphism but the converse does not hold. A precise characterization of primitive morphisms is provided in terms of pure codes. An easily testable characterization is given for uniform morphi...
متن کاملlinear maps preserving or strongly preserving majorization on matrices
for $a,bin m_{nm},$ we say that $a$ is left matrix majorized (resp. left matrix submajorized) by $b$ and write $aprec_{ell}b$ (resp. $aprec_{ell s}b$), if $a=rb$ for some $ntimes n$ row stochastic (resp. row substochastic) matrix $r.$ moreover, we define the relation $sim_{ell s} $ on $m_{nm}$ as follows: $asim_{ell s} b$ if $aprec_{ell s} bprec_{ell s} a.$ this paper characterizes all linear p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Theoretical Computer Science
سال: 2008
ISSN: 0304-3975
DOI: 10.1016/j.tcs.2008.02.044